

 1

ȷɅȽɆɇɃɇȺȿȺȽɃ ɄȷɁȺɄȽɆɇȼɀȽɃ

ŪȺɆɆȷȿɃɁȽȾȼɆ

ɇɀȼɀȷ ɀȷŪȼɀȷɇȽȾɋɁ

ɄɅɃũɅȷɀɀȷ ɀȺɇȷɄɇɈɉȽȷȾɋɁ ɆɄɃɈȹɋɁ

ȺˊɘůŰɐɛɖ Űɞɡ ȹɘŬŭɘəŰɨɞɡ

çWeb Scienceè

ɀȺɇȷɄɇɈɉȽȷȾȼ ȹȽɄȿɋɀȷɇȽȾȼ ȺɅũȷɆȽȷ

"ȷɜɎˊŰɡɝɖ ŮɟɔŬɚŮɑɞɡ Ŭɝɘɞɚɧɔɖůɖɠ ɞɜŰɞɚɞɔɘɩɜ ɛŮ ɢɟɐůɖ ˊɞůɞŰɘəɩɜ ŭŮɘəŰɩɜ, ɤɠ

ˊɟɧůɗŮŰɞɡ Űɞɡ ˊŮɟɘɓɎɚɚɞɜŰɞɠ Prot®g®"

ũŮɩɟɔɘɞɠ ɇɎɜŰůɖɠ

ȺɄȽȸȿȺɄɋɁ: ȹɘɞɜɨůɘɞɠ ȾŮɢŬɔɘɎɠ

ɀŮŰŬŭɘŭŬəŰɞɟɘəɧɠ ŮɟŮɡɜɖŰɐɠ ůŰɞ ȽɜůŰɘŰɞɨŰɞ Ʉɚɖɟɞűɞɟɘəɐɠ əŬɘ

ɇɖɚŮɛŬŰɘəɐɠ (Ƚ.Ʉ.ɇȼȿ.) Űɞɡ Ⱥɗɜɘəɞɨ ȾɏɜŰɟɞɡ ȰɟŮɡɜŬɠ əŬɘ

ɇŮɢɜɞɚɞɔɘəɐɠ ȷɜɎˊŰɡɝɖɠ (Ⱥ.Ⱦ.Ⱥ.ɇ.ȷ.)

ŪŮůůŬɚɞɜɑəɖ, Ƚɞɨɚɘɞɠ 2013

 2

 3

ȷɅȽɆɇɃɇȺȿȺȽɃ ɄȷɁȺɄȽɆɇȼɀȽɃ

ŪȺɆɆȷȿɃɁȽȾȼɆ

ɇɀȼɀȷ ɀȷŪȼɀȷɇȽȾɋɁ

ɄɅɃũɅȷɀɀȷ ɀȺɇȷɄɇɈɉȽȷȾɋɁ ɆɄɃɈȹɋɁ

ȺˊɘůŰɐɛɖ Űɞɡ ȹɘŬŭɘəŰɨɞɡ

çWeb Scienceè

ɀȺɇȷɄɇɈɉȽȷȾȼ ȹȽɄȿɋɀȷɇȽȾȼ ȺɅũȷɆȽȷ

"ȷɜɎˊŰɡɝɖ ŮɟɔŬɚŮɑɞɡ Ŭɝɘɞɚɧɔɖůɖɠ ɞɜŰɞɚɞɔɘɩɜ ɛŮ ɢɟɐůɖ ˊɞůɞŰɘəɩɜ ŭŮɘəŰɩɜ, ɤɠ

ˊɟɧůɗŮŰɞɡ Űɞɡ ˊŮɟɘɓɎɚɚɞɜŰɞɠ Prot®g®"

ũŮɩɟɔɘɞɠ ɇɎɜŰůɖɠ

ȺɄȽȸȿȺɄɋɁ: ȹɘɞɜɨůɘɞɠ ȾŮɢŬɔɘɎɠ

ɀŮŰŬŭɘŭŬəŰɞɟɘəɧɠ ŮɟŮɡɜɖŰɐɠ ůŰɞ ȽɜůŰɘŰɞɨŰɞ Ʉɚɖɟɞűɞɟɘəɐɠ əŬɘ ɇɖɚŮɛŬŰɘəɐɠ

(Ƚ.Ʉ.ɇȼȿ.) Űɞɡ Ⱥɗɜɘəɞɨ ȾɏɜŰɟɞɡ ȰɟŮɡɜŬɠ əŬɘ ɇŮɢɜɞɚɞɔɘəɐɠ ȷɜɎˊŰɡɝɖɠ

(Ⱥ.Ⱦ.Ⱥ.ɇ.ȷ.)

ȺɔəɟɑɗɖəŮ Ŭˊɧ Űɖɜ ɇɟɘɛŮɚɐ ȺɝŮŰŬůŰɘəɐ ȺˊɘŰɟɞˊɐ Űɖɜ 15
ɖ
 Ƚɞɡɚɑɞɡ 2013.

éééééééééé

éééééééééé

éééééééééé

ȽɤɎɜɜɖɠ ȷɜŰɤɜɑɞɡ

ȾŬɗɖɔɖŰɐɠ ȷ.Ʉ.Ū.

 Ʉɞɚɡɢɟɧɜɖɠ ɀɤɡůɘɎŭɖɠ

ȾŬɗɖɔɖŰɐɠ ȷ.Ʉ.Ū.

 ɄŬɜ. ɀˊŬɛɑŭɖɠ

Ⱥˊ. ȾŬɗɖɔɖŰɐɠ ȷ.Ʉ.Ū.

ŪŮůůŬɚɞɜɑəɖ, Ƚɞɨɚɘɞɠ 2013

 4

éééééééééééééééé..

ũŮɩɟɔɘɞɠ ɇɎɜŰůɖɠ

ɄŰɡɢɘɞɨɢɞɠ ȹɘɞɑəɖůɖɠ ɇŮɢɜɞɚɞɔɑŬɠ ɄŬɜŮˊɘůŰɐɛɘɞ ɀŬəŮŭɞɜɑŬɠ

Copyright É ũŮɩɟɔɘɞɠ ɇɎɜŰůɖɠ, 2013

ɀŮ ŮˊɘűɨɚŬɝɖ ˊŬɜŰɧɠ ŭɘəŬɘɩɛŬŰɞɠ. All rights reserved.

ȷˊŬɔɞɟŮɨŮŰŬɘ ɖ ŬɜŰɘɔɟŬűɐ, ŬˊɞɗɐəŮɡůɖ əŬɘ ŭɘŬɜɞɛɐ Űɖɠ ˊŬɟɞɨůŬɠ ŮɟɔŬůɑŬɠ, Ůɝ ɞɚɞəɚɐɟɞɡ ɐ

ŰɛɐɛŬŰɞɠ ŬɡŰɐɠ, ɔɘŬ Ůɛˊɞɟɘəɧ ůəɞˊɧ. ȺˊɘŰɟɏˊŮŰŬɘ ɖ ŬɜŬŰɨˊɤůɖ, ŬˊɞɗɐəŮɡůɖ əŬɘ ŭɘŬɜɞɛɐ ɔɘŬ

ůəɞˊɧ ɛɖ əŮɟŭɞůəɞˊɘəɧ, ŮəˊŬɘŭŮɡŰɘəɐɠ ɐ ŮɟŮɡɜɖŰɘəɐɠ űɨůɖɠ, ɡˊɧ Űɖɜ ˊɟɞɦˊɧɗŮůɖ ɜŬ ŬɜŬűɏɟŮŰŬɘ

ɖ ˊɖɔɐ ˊɟɞɏɚŮɡůɖɠ əŬɘ ɜŬ ŭɘŬŰɖɟŮɑŰŬɘ Űɞ ˊŬɟɧɜ ɛɐɜɡɛŬ. ȺɟɤŰɐɛŬŰŬ ˊɞɡ Ŭűɞɟɞɨɜ Űɖ ɢɟɐůɖ Űɖɠ

ŮɟɔŬůɑŬɠ ɔɘŬ əŮɟŭɞůəɞˊɘəɧ ůəɞˊɧ ˊɟɏˊŮɘ ɜŬ ŬˊŮɡɗɨɜɞɜŰŬɘ ˊɟɞɠ Űɞɜ ůɡɔɔɟŬűɏŬ.

Ƀɘ ŬˊɧɣŮɘɠ əŬɘ ŰŬ ůɡɛˊŮɟɎůɛŬŰŬ ˊɞɡ ˊŮɟɘɏɢɞɜŰŬɘ ůŮ ŬɡŰɧ Űɞ ɏɔɔɟŬűɞ ŮəűɟɎɕɞɡɜ Űɞɜ ůɡɔɔɟŬűɏŬ

əŬɘ ŭŮɜ ˊɟɏˊŮɘ ɜŬ ŮɟɛɖɜŮɡŰŮɑ ɧŰɘ ŮəűɟɎɕɞɡɜ Űɘɠ ŮˊɑůɖɛŮɠ ɗɏůŮɘɠ Űɞɡ ȷ.Ʉ.Ū.

 5

ɄŮɟɑɚɖɣɖ

ɇɞ ˊŬɟɧɜ ɏɔɔɟŬűɞ ŬˊɞŰŮɚŮɑ ɛŮŰŬˊŰɡɢɘŬəɐ ŭɘˊɚɤɛŬŰɘəɐ ŮɟɔŬůɑŬ ɔɘŬ Űɖ ŭɖɛɘɞɡɟɔɑŬ Ůɜɧɠ ˊɟɧůɗŮŰɞɡ

(plug-in) ɔɘŬ Űɞ ˊɟɧɔɟŬɛɛŬ ůɡɔɔɟŬűɐɠ ɞɜŰɞɚɞɔɘɩɜ Prot®g® ɛŮ ůəɞˊɧ Űɖɜ Ŭɝɘɞɚɧɔɖůɖ ɞɜŰɞɚɞɔɘɩɜ.

ȷɟɢɘəɎ ˊŬɟɞɡůɘɎɕɞɜŰŬɘ ɞɘ ůɖɛŬɜŰɘəɧŰŮɟŮɠ ɛŮɗɞŭɞɚɞɔɑŮɠ Ŭɝɘɞɚɧɔɖůɖɠ ɞɜŰɞɚɞɔɘɩɜ ˊɞɡ ɡˊɎɟɢɞɡɜ

ůŰɖ ɓɘɓɚɘɞɔɟŬűɑŬ əŬɘ ɔɑɜŮŰŬɘ ɛɘŬ ůɡɜɞˊŰɘəɐ Ŭɝɘɞɚɧɔɖůɖ ŬɡŰɩɜ. ɆŰɖ ůɡɜɏɢŮɘŬ, ŬəɞɚɞɡɗŮɑ ɖ

ŬɜɎˊŰɡɝɖ ɛɘŬɠ ɜɏŬɠ ɛŮɗɞŭɞɚɞɔɑŬɠ Ŭɝɘɞɚɧɔɖůɖɠ ɞɜŰɞɚɞɔɘɩɜ, ɖ ɞˊɞɑŬ ˊŮɟɘɚŬɛɓɎɜŮɘ ɛɘŬ ůŮɘɟɎ Ŭˊɧ

ŭŮɑəŰŮɠ Ŭɝɘɞɚɧɔɖůɖɠ əŬɘ Űɘɠ ŬɜŰɑůŰɞɘɢŮɠ ɛŮŰɟɘəɏɠ ŬɡŰɩɜ. ɇɞ əɑɜɖŰɟɞ ˊɑůɤ Ŭˊɧ Űɖɜ ŭɖɛɘɞɡɟɔɑŬ Űɞɡ

ˊɟɞŰŮɘɜɧɛŮɜɞɡ ˊɚŬɘůɑɞɡ Ŭɝɘɞɚɧɔɖůɖɠ ŮɑɜŬɘ ɜŬ ˊŬɟɏɢŮɘ ŰŬ ɛɏůŬ ɔɘŬ Űɖ ɓŮɚŰɑɤůɖ Űɤɜ ɡˊŬɟɢɞɡůɩɜ

ɞɜŰɞɚɞɔɘɩɜ əŬɘ Űɖɜ ŬɜɎˊŰɡɝɖ ɜɏɤɜ ˊɞɡ ɜŬ Űɖɟɞɨɜ ɏɜŬ ůɨɜɞɚɞ ɓɏɚŰɘůŰɤɜ ˊɟŬəŰɘəɩɜ,

ůɡɛˊŮɟɘɚŬɛɓŬɜɞɛɏɜɤɜ Űɖɠ ŬɟŰɘɧŰŮɟɖɠ ŭɞɛɐɠ, Űɖɜ Ŭɨɝɖůɖ Űɖɠ ŬɜŬɔɜɤůɘɛɧŰɖŰŬɠ əŬɘ Űɞɡ

ˊŮɟɘɞɟɘůɛɞɨ Űɤɜ ˊɚŮɞɜŬůɛŬŰɘəɩɜ ůŰɞɘɢŮɑɤɜ ŬɡŰɩɜ. ɀŮ ɓɎůɖ Űɖɜ ˊɟɞŬɜŬűŮɟɗŮɑůŬ ˊɟɞŰŮɘɜɧɛŮɜɖ

ɛŮɗɞŭɞɚɞɔɑŬ Ŭɝɘɞɚɧɔɖůɖɠ ɞɜŰɞɚɞɔɘɩɜ ŬɜŬˊŰɨůůŮŰŬɘ ɏɜŬ ˊɟɧůɗŮŰɞ ɔɘŬ Űɞ Prot®g® (software).

Ⱥˊɑůɖɠ, ɔɑɜŮŰŬɘ ˊŬɟɞɡůɑŬůɖ Űɞɡ ˊɟɧůɗŮŰɞɡ (plug-in) Ŭɝɘɞɚɧɔɖůɖɠ ɞɜŰɞɚɞɔɘɩɜ ŮɝɖɔɩɜŰŬɠ Űɖɜ

ɚŮɘŰɞɡɟɔɑŬ Űɤɜ ůɡůŰŬŰɘəɩɜ ɛŮɟɩɜ əŬɘ Űɖɠ ŭɘŮˊŬűɐɠ ŬɡŰɞɨ. Ⱥˊɘˊɚɏɞɜ, ɛɏůŬ Ŭˊɧ ɛɘŬ Ŭˊɚɐ ɛŮɚɏŰɖ

ˊŮɟɑˊŰɤůɖɠ ˊŬɟɞɡůɘɎɕŮŰŬɘ ɖ ɢɟɐůɖ Űɞɡ plug-in ůŮ ˊɟŬɔɛŬŰɘəɏɠ ɞɜŰɞɚɞɔɑŮɠ ŭŮɑɢɜɞɜŰŬɠ Űɖɜ

ˊɟɞůŰɘɗɏɛŮɜɖ ŬɝɑŬ ŬɡŰɞɨ. ɇɏɚɞɠ, ɡˊɎɟɢŮɘ ɏɜŬɠ ɓɐɛŬ ˊɟɞɠ ɓɐɛŬ ɞŭɖɔɧɠ ˊɞɡ ŮˊŮɝɖɔŮɑ Űɖɜ

ŭɘŬŭɘəŬůɑŬ ˊɞɡ ɚŬɛɓɎɜŮɘ ɢɩɟŬ ˊɟɞəŮɘɛɏɜɞɡ ɜŬ ŭɖɛɘɞɡɟɔɖɗŮɑ ɏɜŬ plug-in ɔɘŬ Űɞ Prot®g®.

ȿɏɝŮɘɠ ȾɚŮɘŭɘɎ

ȷɝɘɞɚɧɔɖůɖ ɃɜŰɞɚɞɔɘɩɜ, ɄɟɧůɗŮŰɞ (plug-in), Prot®g®, Ƀŭɖɔɧɠ

 6

Abstract

This document is a master's thesis for the creation of the ñOntology Evaluation plug-in for the

Prot®g® (software)ò. At the beginning the state of the art on ontology evaluation methodologies that

are found in the literature are described. Then it is introduced a new ontology evaluation

methodology which comprises a set of evaluation criteria and the corresponding metrics. The

motivation behind the development of the proposed evaluation framework is to provide the means

for the improvement of existing ontologies and the development of new ones that adhere to a set of

best practices, including efficient structure, increased readability and limited redundancy. Upon the

aforementioned methodology the creation of the ñOntology Evaluation plug-in for the Prot®g®

(software)ò is based. Also, the ñOntology Evaluation plug-in for the Prot®g® (software)ò is

presented by explaining its interface and the usage of its components. Furthermore the plug-in is

tested on a set of various ontologies, through a simple case study scenario, that shows the added

value of the plug-in by showing how the proposed evaluation framework can be applied for

improving existing ontologies or facilitating the design process. Finally, there is also a tutorial that

gives a step by step explanation of the procedure that takes place in order to create a Prot®g® plug-

in.

Key Words

Ontology Evaluation, Prot®g®, plug-in, tutorial

 7

Table of Contents

ɄŮɟɑɚɖɣɖ ... 5

Abstract .. 6

1 - Introduction .. 8

2 - State of the art on ontology evaluation methodologies .. 11

2.1 - Application-based approaches ... 11

2.2 - ñGolden standardò- based approaches ... 12

2.3 - Approaches based on comparison with existing data sources ... 13

2.4 - Attribute-based approaches .. 14

2.5 - Semi-automatic approaches ... 17

3 - A proposed ontology evaluation framework ... 20

3.1 - Naming Conventions ... 21

3.2 - Class Hierarchy .. 22

3.3 - Property Hierarchy ... 25

3.4 - Property Restrictions .. 27

3.5 - Similar Concepts .. 29

3.6 - Documentation/Visualization ... 29

3.7 - Properties Domain and Range ... 30

3.8 - Disjointness Restrictions .. 32

4 - The Ontology Evaluation Prot®g® plug-in .. 34

5 - Testing the plug-in .. 41

6 - Conclusions and Future Work ... 45

References .. 47

Annex A ... 51

Ontology Evaluation Prot®g® plug-in set up instructions ... 51

Tab widget plug-in for Prot®g® 3.4.8 ... 51

Tab widget plug-in for Prot®g® 4.1 .. 66

 8

1 - Introduction

In computer science and information science, an ontology formally represents knowledge as a set of

concepts within a domain, and the relationships between pairs of concepts. It can be used to model a

domain and support reasoning about entities. In theory, an ontology is a "formal, explicit

specification of a shared conceptualization". [1] Ontologies are the structural frameworks for

organizing information and are used in artificial intelligence, the Semantic Web, systems

engineering, software engineering, biomedical informatics, library science, enterprise bookmarking,

and information architecture as a form of knowledge representation about the world or some part of

it.

Building an ontology or an ontology network from scratch is not always an easy process. Even

though many visualization support tools are available that facilitate the various steps of the ontology

lifecycle, the core development of an ontology remains a manual task that requires good knowledge

of the domain to be modeled, as well as good modeling skills and experience. It is a common

practice for knowledge engineers to work together with domain experts in order to build robust

ontologies. One very important decision that has to be made is whether the ontology will be built

from scratch, or will reuse other resources (ontological or non-ontological). Reusing existing

ontologies may save significant effort and facilitates interaction with different development tools.

Since ontology authoring and design styles vary considerably, and generally speaking ontology

authoring is an open and flexible process, ontology refinement is often necessary in order to

improve badly formed ontologies.

In order to refine and change an ontology you've got first to evaluate it. This paper introduces a

formal ontology evaluation framework that comprises a set of evaluation criteria and corresponding

evaluation metrics in measurable form. The motivation behind the development of the proposed

evaluation framework is mainly to overcome the lack of formal evaluation procedures along with

concrete implementation tools, also providing efficient means for the implementation of ontology

design best practices adhering to state of the art approaches and tools. The newly introduced

evaluation framework aims at facilitating the ontology design process, providing the ontology

designer with the means for evaluating existing ontologies or new ones with respect to a set of best

practices, such as appropriate structure, increased readability and limited redundancy.

The tool that we introduce and implements the aforementioned framework is a Prot®g® plug-in.

What is Prot®g® ?

Prot®g® is a free, open source ontology editor and a knowledge acquisition system [2]. Like Eclipse,

Prot®g® is a framework for which various other projects suggest plugins. This application is written

 9

in Java and heavily uses Swing to create the rather complex user interface. Prot®g® recently has

over 200,000 registered users.

Prot®g® is being developed at Stanford University in collaboration with the University of

Manchester and is made available under the Mozilla Public License 1.1.

 Why was the ontology evaluation plug-in developed ?

Looking at various professions you can see that people use some tools that without them it would

have been impossible to successfully carry their jobs. Take for example a doctor that has to examine

a patientôs situation with a possible broken limb. The first thing that the doctor does is to take an X-

ray scan in order to evaluate the patientôs situation. Or think about a microbiologist, without a

microscope it would have been impossible for him to work.

Searching the Prot®g® plug-ins repository you can find several of them that cover different needs.

But if you want to evaluate your ontologyôs situation and have a complete picture of the key

elements which is consisted there seems to be a lack of such a plug-in. So when other professionals,

such as the doctors or the microbiologists mentioned before, have the means to cover their needs the

Prot®g® user seems to be lacking a very useful tool. That was the motive that pushed us to develop

the ontology evaluation plug-in, that we present in this thesis.

 Thesis contributions

The main contributions of this thesis can be summarized as follows:

¶ It establishes a theoretical framework for evaluating ontologies.

¶ It introduces a set of metrics that allow for quantitative evaluation of ontologies.

¶ It proposes a set of good practices for ontology development.

¶ It enables comparison of existing ontologies with respect to the quantitative metrics in terms

of their adherence to the aforementioned proposed practices.

¶ It develops a new prot®g® plug-in for adding ontology evaluation capabilities to the Prot®g®

ontology authoring tool.

¶ It constructs a set of rules for implementing appropriate recommendations that are used for

fine-tuning ontology that suffer from bad design practices.

¶ It showcases the operation of the developed plug-in by testing it to existing ontologies.

 Structure of Thesis

The thesis is structured as follows:

Chapter 2 presents the various ontology evaluation methodologies that exist in the literature and a

brief explanation of its one of them is given. However none of them perfectly fulfills all practical

ontology evaluation needs.

 10

Chapter 3 introduces a formal ontology evaluation methodology which comprises a set of

evaluation criteria and the corresponding metrics. The methodology fills the gap found in the

literature for a more integrated ontology evaluation.

Chapter 4 presents an implementation of a software tool in the form of a Prot®g® plug-in that

executes the proposed evaluation process found in chapter 3. An explanation of the interface and the

consisting parts of the plug-in is given.

Chapter 5 tests the plug-in on a set of various ontologies, through a simple case study scenario, that

shows the added value of the plug-in by showing how the proposed evaluation framework can be

applied for improving existing ontologies or facilitating the design process.

Chapter 6 is the conclusion that summarizes our study and presents thoughts for future work.

At the end of this document there is also a tutorial that gives a step by step explanation of the

procedure that takes place in order to create a Prot®g® plug-in.

 11

2 - State of the art on ontology evaluation

methodologies

Various ontology evaluation methodologies exist in the literature; however none of them perfectly

fulfills all practical ontology evaluation needs. Most of them are tailored to specific application

requirements. In general the majority of the evaluation methodologies are classified into one of the

following categories, according to the way in which the evaluation process is conducted [7]:

¶ Evaluation is based on how well an ontology fulfills the requirements of a particular

application (e.g. work by Porzel-Malaka [8], Kalfoglou & Hu [37]).

¶ Evaluation is based on the comparison of ontologies to a ñgolden standardò, which may

itself be an ontology. This category includes OntoClean [9], OntoNews [39] as well as work

by Dellschaft et al [10], Brank et al. [7] and Zavitsanos et al. [11].

¶ Evaluation involves comparisons of ontologies with a certain data source, such as a

collection of documents about the domain to be covered. Examples include EvaLexon [12],

OntoKhoj [38], work by Brewster et al. [13], Daelemans et al. [14] and Murdock et al. [15].

¶ Evaluation is done by human experts who try to assess how well the ontology meets a set of

predefined set of attributes specified by certain criteria, standards, requirements, etc. This

category includes the Ontometric [16], oQual [17], Pan-Onto-Eval [31], AKTiveRank [32],

ODEval [33], OntoQA [35] and ONTOSTEVAL [18] evaluation frameworks, as well as the

ones developed by Supekar [19], Burton-Jones et al. [20], Good and Tennis [21], Mostowfi

and Fatouhi [34] and Tao et al. [22].

¶ All of the above methodologies are manual activities for evaluating ontologies. However,

there are some efforts proposing semi-automatic techniques like Bioportal [23], Ontology

Metrics [24], LExO [25], ROD [26], OCC [30], OntoManager [36] as well as the ones

developed by Lehmann et al. [27] and Iannone et al. [28]. What follows is a description of

the ontology evaluation methodologies based on the above classification.

2.1 - Application-based approaches

The first category relies on the fact that ontologies are typically consumed by various sorts of

applications or tasks. When embedded in applications, ontologies might be a crucial factor

significantly influencing the performance of the application on a given task. Thus, ontologies may

be evaluated simply by plugging them into an application and evaluating how the ontology

 12

performs within the application. Porzel and Malaka [8] adopted such an approach, a task-based

evaluation process, in order to evaluate a set of ontologies. What can be seen as a drawback about

this category is that the range of tasks needed to provide enough coverage for the typical

applications, in which ontologies are used is too large, making methods of this category impractical

to use in real cases. Additional identified drawbacks include: (a) the evaluation may be insensitive

as in some cases the ontology could be only a small component of the application and therefore

does not significantly influence the performance of the application; (b) in order for the evaluation

framework to be trusted and reliable, comparison of ontologies must be accomplished under the

same conditions, i.e., incorporating them into the same application, which is difficult to carry out

due to different ontology formats and structures.

Kalfoglou & Hu [37] discuss the need to evaluate ontologies available from the SemanticWeb, from

technological, strategic and political viewpoints. From their experience in building the Computer

Science AKTive Space (Shadbolt et al., 2004), which is a portal to explore semantically-annotated

domains, the authors emphasize problems with and suggest solutions for ontology evaluation.

Problems include verifying appropriateness, validity, consistency, and so on. Solutions provided

over the medium term are: the participation of experts in communities of practice (Lave & Wenger,

1991; Brown & Duguid, 2000) and ontology classification according to use. Similarly, solutions

provided over the long term are related to the evolution of standardization and certification of

ontology processes.

2.2 - ñGolden standardò- based approaches

In the second category, Welty et al. [9] propose OntoClean for ontology evaluation. They suggest

providing each concept and relation with various meta-properties, such as rigidity, identity,

dependence and unity, which would help to discover inconsistency or ambiguity existing in

ontologies. The main disadvantage of this approach is that a user needs to manually add all the

meta-properties for concepts of the ontology, thus making the evaluation process rather tedious and

difficult. On the contrary, our methodology omits the use of any type of meta-properties and this

makes it easily applicable to any ontology. In addition, the number of actually tagged ontologies is

obviously far too low. This again points out a discrepancy between the expected work and the

expected benefit of using OntoClean. Another drawback of OntoClean is that tagging an ontology

implies further ontological decisions possibly unintended by the ontology authors. Our approach

dodges this problem by using objective, quantitative refinement criteria instead of an individual or

small groupôs subjective point of view.

Also in this category, work by Dellschaft and Staab [10] attempts to realize a comparison of two

ontologies both at data and conceptual level. The first step of their work was to build a ñgolden

standardò domain ontology, starting from the automatically learned concepts and relations. Then the

automatically created ontology is assessed against the ñgolden standardò by using metrics such as

 13

lexical and taxonomic precision and recall. A somewhat similar approach was discussed in [7]. The

difference is that this one assumes that both ontologies are constructed over the same set of

instances. Moreover, this approach completely disregards concept labels, but in many practical

situations these labels are an important part of the ontology and contain adequate knowledge about

the problem domain. Another approach [11] contributed also to the ñgolden-basedò ontology

evaluation methods, through a framework and a set of evaluation measures in order to assess

learned ontologies against ñgolden standardò ontologies.

Maynard et al. [39] propose metrics for an ontology-based evaluation of information extraction. The

comparison standard is composed of a text corpus, called OntoNews, enriched by annotations

provided by a general purpose ontology. The authors describe traditional information extraction

metrics: Precision and Recall (PR), Cost-based Evaluation (CE), Learning Accuracy (LA); and

present a new proposal, in fact an LA extension, called Balanced Distance Metric (BDM). Three

metrics are used to evaluate the standard: LA, DBM and a combination of PR and CE. The results

indicate that both DBM and LA metrics perform better in extracting information from hierarchical

structures, however problems are found when humans evaluate them.

After reviewing the aforementioned five methods the conclusion is that it is rather pointless to use

ñgolden standardò-based methods during ontology evaluation. In practical tasks, where users have

to choose the most suitable ontology in order to incorporate it into their system a ñgolden standardò-

based method seems to be useless. Indeed, knowledge of the ñgolden standardò is not necessarily

the ideal choice, since it is the outcome of manual, error prone process. Furthermore, any modeling

problems associated to this ñgolden standardò will be reproduced through the evaluation method,

which will reward ontologies with similar problems and penalize those which do not include related

concepts. This also implies that the ñgolden standardò-based evaluation method lacks generalization

as it always depends on the ñgolden standardò to be used.

2.3 - Approaches based on comparison with existing data sources

In the third evaluation category an ontology is assessed by comparison to existing data sources

about the problem domain, to which the ontology refers. Such data source is usually a collection of

textual documents. For example, EvaLexon mainôs goal is to evaluate at development time

ontologies that are created by human experts from text [12]. In sharp contrast with OntoClean,

EvaLexon is intended for linguistic rather than conceptual evaluation. Linguistic evaluation was

based on precision and recall, comparing ontologies with statistically relevant terms. The obtained

results seem to be subjective because the reference point for the evaluation is the text itself. If the

ontology is tested against a different data source, the precision and recall that are used in order to

evaluate the response of the ontology to a query engine will be different. Hence, this evaluation

method cannot be generalized as it is based on a particular source of data to compare. However, the

aim of a complete evaluation framework is to assess ontologies based on a common ground that

 14

includes metrics relevant to the ontology structural and functional characteristics. This is the main

difference that was identified between EvaLexon and the approach presented next to this document.

Another data-driven approach has been proposed in [13]. However, an evident drawback of this

method is that it is difficult to guess about a type of relations between existing textual data and

ontology terms, and, therefore, ontology evaluation seems to be rather complicated and obscure. In

the case of more extensive and sophisticated ontologies that incorporate a lot of factual information,

an approach in [14] points out how recently developed natural language processing (NLP)

techniques can be used for evaluating ontologiesô semantics (vs. their syntax). However, human

intervention is still essential to evaluate the proposed ontological structures making this method

rather slow and difficult.

OntoKhoj [38] is a portal featuring search, ranking, aggregation and classification services, focused

on ontologies available on the Web. In order to determine the ontology subject and then classify it,

textual data are extracted, such as the names of concepts and relations. Afterwards, these data are

used as entries in a classification text model, trained with standard machine-learning algorithms.

Murdock et al. [15] reviewed evaluation methods that focus solely on syntactic correctness, on the

preservation of semantic structure and on usability layer. They proposed two novel methods, the

volatility and violation scores, for dynamic ontology evaluation and described the use of these

methods for evaluating the different taxonomic representations that are generated at different times

or with different amounts of expert feedback. The volatility score measures the structural stability

over the ontology extension and evolution. The violation score measures the semantic fit between

an ontologyôs taxonomic structure and the distribution of terms in an underlying text corpus. The

main disadvantage of this approach is that it presents a complex mathematical analysis for these two

scores. In addition, our methodology covers two more ontology layers, data/application and

lexical/vocabulary layer.

2.4 - Attribute-based approaches

Last but not least family of ontology evaluation approaches, to which belongs the methodology that

is recommended at the next chapter, deals with the problem of defining several metrics or attributes;

for each metric, the ontology is evaluated and a numerical or linguistic score is assigned to it. In this

family, work in [15] proposes that an ontology could be enhanced with metadata, such as its design

policy, version number, the way it is being used by others, as well as peer reviews provided by

ontology users. The downside of this approach is that it relies almost entirely on manual human

intervention to both provide annotations and use them in order to evaluate and select an ontology.

The Ontometric method is based on a taxonomy of 160 metrics of ontologies [16], called multilevel

framework of characteristics, that provides the outline to choose and to compare existing

ontologies. The multilevel framework of characteristics has, in the superior level of the taxonomy,

 15

five basic aspects on the ontologies that are denominated dimensions. These pertain to ontology

content, its organization, the representation language and development tools among others. All these

attributes must be filled-in by the user. The evident drawback of this system is a need of user

manual assessment of ontologies, which is a complicated and time consuming task. Even for those

attributes that have quantitative representation, such as Number_of_Axioms, Number_of_Concepts,

Maximum_Depth, etc., Ontometric provides linguistic representations (i.e., non-numerical): such as

low, medium, high, etc. This is an obvious drawback since it provides only an intuitive perception

of the designated attributes, which is inadequate especially when it comes to perform concrete

comparisons between two or more ontologies in terms of their numerical attributes, such as the

number of concepts or the average depth.

A different approach [20] proposes ten simple evaluation criteria, such as syntactical correctness,

clarity of vocabulary, lawfulness, richness, interpretability, consistency, accuracy, access history,

authority, relevance. A drawback of this approach is that there is little documentation to help us

ascertain to what extent the ontology matches the real-world state of the problem domain, to which

it refers. Moreover, even though the criterion of accuracy against ontology queries is taken into

account when computing the overall ontology score, it is usually difficult to compute the percentage

of false statements in any other way apart from examining them all manually. On the positive side,

we include the automatic calculation of the aforementioned criteria, as well as its support for

metadata.

The method in [17] consists of a meta-ontology O2 that characterizes ontologies as semiotic

objects. The meta-ontology is complemented with an ontology about ontology evaluation and

validation, namely oQual. Based on O2 and oQual, this method identifies three main types of

predefined criteria for ontology evaluation: structural criteria, which are typical of ontologies

represented as graphs; functional criteria that are related to the intended use of an ontology and its

components, i.e., their function; usability-related criteria, that depend on the level of annotation of

the considered ontology. Although similar to the methodology that is presented on this paper, this

method relies on the use of quite complex measures. This introduces a compounded complexity in

this approach, which results in increasing the effort required for the ontology evaluation process.

On the other hand, the method proposed by Good and Tennis [21] define a collection of metrics for

describing and comparing sets of terms in controlled and uncontrolled indexing languages. It is then

shown how these metrics can be used to characterize a set of languages spanning folksonomies,

ontologies and thesauri. This framework, although applicable to ontologies, is not designed for

ontologies in principle, but for more generic forms of knowledge representation. One drawback of

this approach is that it is difficult to construct automated tests to compare ontologies using the

aforementioned criteria.

Tao et al. [22] have focused on instance ontology data evaluation. They have identified three

categories of issues that may occur in instance data which are syntax errors, logical inconsistencies,

 16

and several potential issues. Syntax errors are the issues indicating that the syntax representation of

instance data does not conform to the corresponding syntax specifications such as RDF/XML, N3,

N-Triple, OWL, etc; logical inconsistencies are the issues showing that the instance data includes

contradictory axioms; finally, potential issues are the issues caused by the failure of the instance

data to follow the restrictions that are imposed by several constraints on classes, properties and

individuals. The downside of this approach is that it evaluates only instance data and not the whole

knowledge base which includes classes, properties and instances.

Alani et al. [32] presents a technique called AKTiveRank that finds a set of related ontologies to a

set of terms the user enters. It uses an aggregation of the values of the four measures AKTiveRank

includes to evaluation ontology schemas to select one of the ontologies to be the most suitable. The

measures they developed are: class match, density, semantic similarity, and betweenness. Corcho et

al. [33] introduce the ODEval tool that can be used for the automatic detection of possible

syntactical problems in ontologies, such as the existence of cycles in the inheritance tree of the

ontology classes, inconsistency, incompleteness, and redundancy of classes and instances. Mostowfi

and Fatouhi [34] define eight features they use to measure the quality of ontologies. These features

are used to define a set of transformations to improve the quality of ontologies. For example, the

authors suggest if a class (Student) has a property (Salary) that does not always have values

(because it only holds for student assistants), then the class needs to be split into two: Student and

Student Assistant. Other transformations attempt to make changes in properties or data types to

make the ontology more consistent. OntoQA [35] works on populated ontologies, thus enabling it

from utilizing knowledge represented in the instances to gain a better measure of the quality of the

ontology. In OntoQA, metrics (features) are divided into two groups: schema metrics that address

the design of the ontology schema and instance metrics that address the way instances are organized

within the ontology. The first category evaluates ontology design and its potential for rich

knowledge representation. The second category evaluates the placement of instance data within the

ontology and the effective utilization of the knowledge modeled in the schema.

The Ontology Structural Evaluation Framework (ONTOSTEVAL) for benchmarking the internal

graph structures was proposed in [14]. In this work, the simplicity of an adjacency matrix of a graph

was used to compute the algebraic spectrum and structural dimensions of ontology. The framework

was used in transport and biochemical ontologies. The corresponding adjacency, incidence matrices

and other structural properties like depth, breadth and density were computed using MATLAB.

What can be seen as a drawback in this approach is that it depends only on the structure of the

ontology, disregarding other layers such as syntactic, application and usability.

The Pan-Onto-Eval [31] aims to extract a snapshot of an ontology that contains the most important

characteristics of the ontology (concepts and relations that represent the thematic categories of the

ontology). The measurements represent a comprehensive perspective on the following four issues:

a) Triple Centricity: an ontology is meaningful when there are many diverse relationships, i.e.,

domain concepts associated with other concepts through diverse relations. Hence are analyzed their

 17

roles with relations (i.e. whether they are domain or range concepts) and their importance. b) Theme

Centricity: reflects the importance of non-ISA relations in the evaluation of any ontology in terms

of relational richness. c) Structure Centricity: describes the topology (i.e., shape and size) of

concept hierarchies of an ontology and d) Domain Centricity: an ontology may consist of more than

one IS-A hierarchy that contribute to the semantics and distribution of information across the

ontology.

After having reviewed the most representative ontology evaluation methodologies focusing on their

comparison with our approach, we conclude that the vast majority of the examined approaches

address different types of evaluation criteria. The only exceptions are Ontometric [16] and oQual

[17] that share a set of common attributes that are handled as evaluation criteria. These two

approaches, along with ours surpass the more traditional ontology evaluation approaches, such as

ñgolden standard-ò and data source based, in that they provide support for some of the less

frequently addressed issues in the related literature, such as the number of restrictions, documented

classes and naming conventions. Even though our approach falls in the same category with

Ontometric and oQual, it introduces some advances over them. In particular, both Ontometric and

oQual require more time and effort to deploy due to their complexity both in terms of their structure

and the number of supported evaluation criteria. On the other hand, the method presented at this

document provides a simpler and more straightforward evaluation framework. Beyond this the

recommended framework supports numerical representation of quantitative evaluation criteria, as

opposed to Ontometric, thus making the overall evaluation process more accurate.

2.5 - Semi-automatic approaches

All the above methodologies are manual activities for evaluating ontologies. However, there are

some efforts proposing semi-automatic techniques.

In [23] the metrics that BioPortal calculates for the ontologies in its repository are presented. In

general, BioPortal calculates the metrics when the ontology is uploaded and stores it as part of the

Ontology Metadata. There are two groups of metrics: statistical such as number of classes,

properties, axioms, siblings and maximum depth and quality-assurance metrics that may give some

indication of the quality of the ontology and help ontology authors improve the quality. These

metrics can be accessed through the BioPortal user interface and through dedicated REST services.

A drawback of this approach is that these quality-assurance metrics cannot be calculated in

ontologies with more than 200 classes. Ontologies with more than 200 classes in a category will

still have the total number of classes in that category counted, but no quality list will be available.

In addition, Ontology Metrics [24] is a web-based tool that validates and displays statistics about a

given OWL ontology, including the expressivity of the language it is written in. Some of the most

useful metrics are: number of classes, object properties, data type properties, individuals and

annotation properties. It accepts ontologies written in RDF/XML, OWL/XML, OWL Functional

Syntax, Manchester OWL Syntax, OBO Syntax, or KRSS Syntax and it is powered by the OWL

 18

API. What can be seen as a drawback about this tool is that it covers only basic metrics and cannot

provide information for more complicated hierarchy metrics like maximum depth, number of

siblings and parents, number of internal and external nodes as opposed to our approach.

Moreover, LExO (Learning Expressive Ontologies) [25] is a tool for transforming natural language

definitions into OWL DL axioms. The core of LExO is a syntactic transformation of natural

language sentences into description logic axioms. Given a natural language definition of a class,

LExO starts by analyzing the syntactic structure of the input sentence. The resulting dependency

tree is then transformed into a set of OWL axioms by means of manually engineered transformation

rules. To ensure the consistent evolution of the learned ontology LExO uses an algorithm which

identifies minimal parts of inconsistencies and removes them from the ontology. Thus, LExO could

be used for resolving inconsistencies in ontologies that are automatically created by lexical

resources.

In [27] authors analyzed the learning problem in Description Logics. First they introduced a general

framework for different learning methods. Then they analyzed refinement operators as the main

method to traverse the space of concepts ordered by subsumption. These operators in combination

with the learning algorithm could be used for ontology creation and maintenance. Similarly, in [28]

a learning algorithm for description logics, was created, which also makes use of refinement

operatorsðhowever, not as centrally as in previous approach. The core idea of this algorithm is

blame assignment, i.e. to find and remove those parts of a concept responsible for classification

errors. Instead of using the classical approach of combining refinement operators with a search

heuristic, a different approach is taken therein for solving the learning problem by using

approximated MSCs (most specific concepts). However, a problem of these algorithms is that they

tend to produce unnecessarily long concepts.

In [30] we have an automated method for checking the usage of an ontologyôs schema entities

(concepts, axioms) by a set of individuals. The novel aspect of the ontology coverage check lies

very much in extending the meaning of unpopulated areas from concepts without individuals to

axioms without satisfying individuals. Among the existing approaches to evaluation, we can most

closely relate the OCC to the approach of data driven ontology evaluation described by Brewster

[13]. The OCC shares two common points with Brewster. First the idea that an ontology should

match a very concrete domain defined by a text corpus. Second, that the extent to which the data

cover the ontology is a measure of appropriateness of the ontology. However, there are various

differences. Some of them are due to the fact that Brewsterôs method is designed for ontology

selection instead of for ontology engineering. Another difference is, that the OCC does not use data

outside the ontology (like a text corpus for example), but assumes the data to be already available in

an ontology format, i.e. as individuals in OWL terminology. On the other hand, the OCC is able to

consider axiom usage by the data.

The OntoManager [36] tool provides an easy-to-use management system for administrators, domain

 19

experts, and business analysts, since they are able to use it productively, with a minimum of the

training. OntoManager is best applied in domains in which usage information of ontologies is

available to identify relevant concepts of an ontology. This occurs mainly in the area of web portals

or any other ontology-based application producing so called semantic log files. However, the

limitation on usage information does not allow to evaluate an ontology in general. Therefore

OntoManager might be used as an additional analysis of an ontology within an existing evaluation

process.

Finally, in [26] they proposed the Rapid Ontology Development approach (ROD) during which the

user is continuously supported by ontology evaluation and recommendations for progressing to next

steps. These recommendations refer to circulatory errors, concept description in natural language

and conceptsô connection. The applicability of the approach is demonstrated on financial trading

domain where a user can build Semantic Web application for financial trading based on ontologies

that consumes data from various sources and enable interoperability. However, this approach

focuses mostly on ontology modeling and not on evaluation.

 20

3 - A proposed ontology evaluation framework

This section analyzes the most important aspects to be considered during the restructuring phase as

part of our evaluation methodology. The analysis that follows is based on the layer-oriented

approach that was originally defined in the Ontology Summit 2007 [29]. These layers provide a

taxonomy of the identified ontology issues that should be taken into account during the refinement

process. Each one of the identified issues or properties indicates a necessary step in the refinement

and evaluation process that should be followed in order to improve the ontologies in their original

form. The proposed layers or dimensions are distinguished between internal and external ones.

Internal dimensions are concerned with the ontologies themselves, their internal organization,

naming conventions, representation, and so on. The external measures are related to their take-up

and use within user communities, their role as standards, embedding within business practices, and

so on.

In particular, the basic internal dimensions or ólayersô are listed below:

 1. Lexical/Vocabulary layer ï This layer includes all restructuring attributes that are relevant

to the syntactic elements of ontologies, such as naming conventions.

 2. Structural/Architectural layer ï It includes all aspects that characterize the structural

attributes of ontologies, i.e., concept and property hierarchy, grouping of similar ontological

concepts, that are repeated and removal of unused modules.

 3. Representational/Semantic layer ï This layer relates to the semantic elements of

ontologies, i.e., attributes whose goal is to conceptually describe the structural ontology elements.

Disjointness restrictions belong to this layer.

 4. Data/Application layer ï The fourth internal layer covers attributes relevant to how an

ontology applies to a given domain. Domain range definition of properties is listed as an

attribute of this layer.

In addition to the internal layers listed above, there is an external one:

 5. Usability layer ï It includes quality measures that are required to ensure that the resulted

ontologies satisfy a set of usability standards. This layer includes documentation and

visualization.

All of the aforementioned layers along with the corresponding criteria, as well as the associated

metrics that are defined later on in this Section are summarized in Table 1. In the following

subsections we present in detail each one of the restructuring criteria that appear in Table 1.

 21

Table 1: Ontological Layers, corresponding restructuring criteria and their metrics.

Layer Criteria Metrics

1. Lexical/Vocabulary Naming Conventions N1-N3

2. Structural/Architectural Class Hierarchy/Taxonomy

Property Hierarchy/Taxonomy

Property Restrictions

Structural Modularity

C1-C13

P1-P5, C6-C13

P6-P12

G1,G2

3. Representational/Semantic Disjointness Restrictions J

4. Data/Application Domain and Range R1,R2

5. Usability Documentation/Visualization D1,D2

3.1 - Naming Conventions

Naming conventions refer to the way, in which all elements of an ontology are named. They belong

to the lexical/vocabulary layer, because naming is basically part of the syntactic features of

ontologies. It deals with the formulation of well-formed terms and definitions, where essential

features should be satisfied by all naming conventions (e.g. nominal, verbal, etc.). According to this

criterion circularity in definitions should be avoided and junk categories should be eliminated.

There are a number of useful conventions that can be applied in naming that improve reusability:

although formally the names given to concepts are arbitrary, in practice the naming can serve a

positive role for documentation and understanding an ontology when attempting to assess its

relevance for a particular aim. As a consequence, our metrics include particular strategies of

improving the quality and consistency of names used within an ontology. As an example, there may

be some concepts modeling similar kinds of information. These concepts usually begin with the

same prefix and end with a different suffix, or vice versa. However, in practice it is often observed

that not always the same prefix/suffix is used. In this case, these concepts should be aligned for

reasons of clarification and clearness and follow the same naming conventions (e.g. begin with the

same prefix or end with the same suffix).Furthermore, plural/singular forms and the use of camel

case or use of the underscore symbol should not be mixed. According to this criterion, our

evaluation metrics propose that one common naming convention always be adopted, such as the

camel-case and use e.g. only singular form throughout the ontology.

So for example a class with the name Local_support_groups has been renamed to

LocalSupportGroup, so that camel-case and singular form are used. The property with the name

LongBench has changed to longBench because it is a property name and therefore should begin

with a lower case letter. Other examples include renaming Availability_assistance_services_Hearing

to AvailabilityAssistanceServiceFor HearingImp, or clear_signs to clearSign, etc.

 22

Whereas providing this kind of clean-up is straightforward, there are also naming conventions that

go further in that they can provide more of an indication of the structure of an ontology as a whole;

we return to these when we discuss the class hierarchy below.

Evaluation Metrics

In order to assess in a measurable way how well the naming conventions criteria are fulfilled by an

existing ontology we introduce the following three metrics.

 N1: Classes with the same naming conventions. This metric is equal to the percentage of the

majority of classes that adopt the same naming convention schema, such as camel-case notation,

singular form of words and upper case letter. The value of this parameter ranges from 0%, when

none of the classes adopt any naming convention standard, to 100% where all classes adopt the

same standard. The value of this parameter indicates the extent to which the ontology adopts a

common naming standard.

 N2: Object properties with the same naming conventions. This metric is the same as the

previous one but it applies on object properties rather than classes and takes into account property

names that begin with a lower-case letter.

 N3: Data-type properties with the same naming conventions. Similarly, this metric is defined

as in the previous case but it applies on data-type properties.

3.2 - Class Hierarchy

Concept taxonomy and hierarchy belong to the structural/architectural layer, because the hierarchies

that are defined within concepts and properties determine the way in which the ontology will be

structured. On the other hand, ontologies are commonly formed as taxonomies that are built around

concrete configurations of different hierarchies amongst ontological elements. A flat concept

hierarchy, for instance, usually implies that there are too many concepts on the same level. This

strongly suggests the existence of unexploited grouping possibilities for concepts with similar

semantics, hence these concepts should be grouped together under more general intermediate

concepts. Specifically, the problem with flat concept hierarchy is that everything exists everywhere

at once and all on the same level. Thus, there is no modularity, openness or depth in these

ontologies and there is a growing appreciation that ontologies are evolutionary. However,

evolutionary theory demands a clear identification of variation, interaction and selection but a flat

ontology can make no sense of this.

Another case is the existence of branches with different structures. This may result in too deep

ontologies and unbalanced taxonomies. Finally, the level of generality to which the concepts refer is

not always taken into account with sufficient careful, thus resulting in an inappropriate ontology

 23

structure.

All of these issues need to be considered during the ontology design or restructuring phase. For

instance, a flat concept hierarchy can be converted to a more arbore scent (tree-like) structure, so as

to reduce the number of concepts on the same level. Exploiting the grouping possibilities for

concepts of similar kinds results in a better grouping and a more clear reorganized structure of the

ontology. A more appropriate structure for ontologies can also be achieved by grouping together on

the same hierarchy level all concepts that refer to the same level of generality. Finally, the structure

of branches, which are very different than others can change in order to have a more balanced and

equally developed hierarchy.

So let's give two examples that illustrate the concept of hierarchy/taxonomy restructuring. If we

have an ontology with the classes Bar, Cafe and Restaurant on the same level we can group them

together under the more general concept FoodAndDrink that represents food and beverage facilities.

Or if we have an ontology with the classes Climate, MeanTemperature and Temperature on the

same level we can organize them on a three-level structural schema, according to the semantics of

each class (e.g. MeanTemperature and Temperature can be classified as subclasses of Weather,

which in turn becomes a subclass of the class Climate).

This then needs to be taken further with respect to the naming conventions. A further convention

(perhaps introduce this above after all) is to ensure that the internal structure of the names that are

selected match the intended class hierarchy. This can have a dramatic effect both on the

intelligibility of an ontology and on its appropriate reuse. In general it should be ascertained for

each complex concept label whether it exhibits the linguistic structure of Modifier+Head. The Head

should correspond to the class-subclass concept hierarchy. Modifiers may then distinguish

subclasses. In the present case, we have a complex head: ñFoodò and ñDrinkò. Under their usual

interpretations these names would suggest that we are in a portion of the concept hierarchy to do

with consumable foodstuffs. But this turns out to be incorrect since we are in the portion of the

hierarchy concerned with types of places for consuming these foodstuffs.

Here we therefore suggest a further correction of the name: the less appropriate ñFoodAndDrinkò

needs to be replaced with something along the lines of ñFoodAndDrinkFacilityò. This immediately

renders automatically generated documentation more intelligible and incorporates more of the

designers intentions directly in the naming.

A similar evaluation can apply in the second case here: it can be asked whether ñTemperatureò is a

subclass of ñWeatherò ïpresumably not, so actually we probably have properties here rather than

subclasses.

Evaluation Metrics

 24

The concept hierarchy indicates how well a specified taxonomy is structured. The measurable

criteria that are used in order to assess this feature are associated with the number of classes,

average number of parent and sibling nodes, as well as various metrics about the characteristics of

the tree taxonomy, such as the tree depth, the internal and external paths, and so forth. The total list

of these criteria follows.

 C1: Total Number of Classes. It is defined as the number of named classes in the ontology.

 C2: Number of Primitive Classes. This metric equals the number of classes in the ontology

that have only necessary conditions. When necessary conditions are defined for a class, any instance

of this class should necessarily fulfill these conditions. However, if any instance fulfills these

conditions, this does not necessarily imply that it is also a member of this class.

 C2 = C1 ï C3

 C3: Number of Defined Classes. This is equal to the number of classes in the ontology that

have at least one set of necessary and sufficient conditions. When necessary and sufficient

conditions apply to a class, any member, i.e., instance of this class should necessarily fulfill these

conditions, and vice versa, if any instance fulfills these conditions then it is certainly a member of

this class.

 C4: Average Number of Parents. This metric expresses the average number of parent classes,

or ñsuper-classesò based on each class in the taxonomy. The greater the value of this metric is, the

denser the structure of the ontology becomes.

 C4 = (The sum of super-classes of all classes) / C1

 C5: Maximum Number of Parents. Similarly to the previous metric, this one is equal to the

maximum number of super-classes measured over all ontology classes. This is a structure related

metric that expresses the maximum number of Isa hierarchy associations that are defined per class.

 C6: Average Number of Siblings. This metric is the average number of sibling classes, i.e.,

classes that share the same parent of all ontology classes. This metric expresses the average number

of child nodes per hierarchical level and parent class. As the value of C6 increases, the ontology

becomes denser, and the number of child nodes increases per parent node.

 C6 = (The sum of adjacent sub-classes of all classes) / (Number of parent classes)

 C7: Maximum Number of Siblings. This metric displays the maximum number of classes

that share the same parent node in the ontology. This is also a metric of how dense an ontology is in

terms of its structure. A large value for C6 indicates a dense ontology with a great number of child

nodes per parent node.

 C8: Max Depth. Given an ontology tree, this metric computes the maximum depth of the

tree structure, namely the number of nodes along the longest path from the root node down to the

farthest leaf node. This metric indicates the number of structure levels within the ontology. A big

value for C8 indicates that the taxonomy consists of many hierarchy levels.

 25

 C9: Total Number of Nodes. This is the total number of nodes in the ontology tree structure.

This is a metric about how dense the ontology structure is.

 C9 = C1 + 1

 C10: Total Number of Roots. The total number of nodes that belong to the topmost level in

the ontology tree hierarchy, i.e., the number of nodes with no parents. This indicates the number of

independent classes that are defined within the same taxonomy. It is a measure of ontology

modularity.

 C11: Total Number of Internal Nodes (Parents). This is equal to the total number of nodes in

the ontology tree. Only nodes with child nodes are taken into account. This metric expresses how

dense is the ontology structure.

 C11 = C1 - C13

 C12: Total Number of Children. This is equal to the total number of child nodes in the

taxonomy, i.e., nodes with at least one parent node. This metric also expresses the density of the tree

structure.

 C13: Total Number of External Nodes (Leaf). This is defined as the total number of nodes in

the ontology tree structure that do not have any child nodes. Root nodes are also taken into account

for the calculation of this metric. Again, this is a taxonomy-density metric.

3.3 - Property Hierarchy

This and the next refinement criterion, i.e., Property Restrictions, belong to the

structural/architectural layer of the ontology authoring process because hierarchy applies to

properties in a similar way to that of concepts. Property structure may be quantitatively evaluated

by similar metrics as in Section 3.2 such as the size, the depth/breadth of hierarchy, density and

complexity of the hierarchy of object and data properties. Issues that are addressed by this criterion

include the lack of well-structured properties in ontologies when there is a clear hierarchical

relationship between different properties that share common characteristics. The need for adding

hierarchical relationships between properties occurs when properties are poorly gathered into

conceptual groups of similar properties. In this case a restructuring process is often necessary by

exploiting grouping possibilities for properties of equal domains/ranges or their functions. By

introducing one or more levels of hierarchy between these properties we achieve a more efficient

representation of the involved properties that also results in the reduction of redundant information

within the definition of each property. On top of this, the application of the restructuring process to

ontology properties can reduce the number of properties on the same level and produce a more

hierarchical structure over properties. This implies a more concrete and understandable ontology

structure.

 26

Figure 1 illustrates an example of how to apply hierarchy in properties by grouping together

properties that are defined in the same context. The properties dayValue and nightValue, which are

both properties of MeanTemperature, have been subsumed as generalInfoOfMeanTemperature. On

the other hand properties minValue and maxValue, which are both properties of Temperature, have

been subsumed under property generalInfoOfTemperature. Similarly, properties

generalInfoOfMeanTemperature and generalInfoOfTemperature, together with the new added

properties cloudy, rainy, snowy and sunny were subsumed as generalInfoOfWeather, which finally

becomes a subproperty of generalInfoOfClimate.

After the application of the refinement process properties dayValue and nightValue become

subproperties of generalInfoOfMeanTemperature, while minValue and maxValue become

subproperties of generalInfoOfTemperature. Finally, the properties generalInfoOfMeanTemperature

and generalInfoOfTemperature become subproperties of generalInfoOfWeather.

Evaluation Metrics

General property metrics are used to measure the total number of properties in the taxonomy, as

well as the total number of properties of each type (i.e., object, data-type and annotation properties).

In particular, the following metrics are defined.

 P1: Total Number of Properties. This metric is equal to the total number of properties in the

ontology (including object, data-type, and annotation properties). It holds that P1 = P2 + P3 + P4;

metrics P2, P3 and P4 are described below.

 P2: Number of Object Properties. This is equal to the number of object properties in the

Figure 1: Example of restructuring properties based on equal domains.

 27

ontology. Object properties provide associations between individuals of the same or different

classes in the ontology.

 P3: Number of Data-type Properties. Similarly, this metric is defined as the number of data

type properties that associate individuals to XML-schema data types or RDF literals.

 P4: Number of Annotation Properties. This metric counts the number of annotation

properties. These properties are used for documentation purposes, such as to add metadata to

classes, individuals and properties.

 P5: Properties with an inverse specified. This provides the number of properties for which

an inverse property is specified. For example, in the general MIOntos ontology the inverse of the

property hasUseCase is the object property hasService.

The structural characteristics of properties are treated in a way similar to that adopted for classes, as

analyzed in the Class Hierarchy/Evaluation Metrics section. Metrics in this category address the

measurability of features such as the depth and average number of siblings, total number of internal

and external nodes, etc. These measurable characteristics represent the extent to which the

properties in a taxonomy are structured. For the assessment of the property-related structural

characteristics of an ontology we use metrics C6 to C13 that have been introduced for the

assessment of concept hierarchy, but which are also applicable in the case of properties. Here we

use the same metrics, applying them to properties rather than concepts. This is logical as, with

SHOIQ, SHIQ, etc., the various properties can be also structured in the same way as classes. For

example C8, maximum depth, is equal to the maximum depth of all property trees, namely the

number of nodes along the longest path from the root node down to the farthest leaf node. This

metric indicates the number of structure levels within the properties taxonomy.

3.4 - Property Restrictions

We can also use properties in order to create restrictions. This feature is common in the Web

Ontology Language3 (OWL). As the name suggests, restrictions are used to impose various

restrictions on individuals that belong to a class. Restrictions in OWL fall into three main

categories:

¶ Quantifier Restrictions: AllValues From , SomeValues From.

¶ HasValue Restrictions.

¶ Cardinality Restrictions.

Quantifier and hasValue constraints comprise restrictions on the kinds of values that a property can

take, whereas cardinality restrictions are applied on the number of values that a property may take.

Property restrictions can easily be evaluated by the number of various restrictions that exist in an

ontology.

The total time for checking ontology consistency depends on the size of the initial ontology but also

on the use of these restrictions. Constructs like SomeValuesFrom, MinCardinality, and

 28

MaxCardinality will cause the consistency algorithm to create new nodes in the ontology. Applying

this algorithm to new nodes will require more processing time. Thus, there have to be always a

good reason to include restrictions in the ontology. Otherwise, unnecessary restrictions would

always result in poor performance of consistency checking mechanisms.

Evaluation Metrics

The appropriate metrics used in order to enable measurable evaluation of several restrictions-related

features, such as the number of cardinality, existential, universal restrictions, etc. are as follows.

These indicate the extent to which the properties in a taxonomy are imposed to various types of

restrictions. In particular, we define the following metrics.

 P6: Total Number of Restrictions. In OWL, properties are used to create restrictions. This

metric is defined as the number of various restrictions that are imposed to individuals (instances) of

a class. Restrictions in OWL fall into four main categories: existential, universal, cardinality and

hasValue restrictions. Based on these, the following additional metrics P7 to P12 are defined.

 P7: Number of Existential Restrictions. This metric is equal to the total number of

restrictions applied on individuals with at least one property from a specific range. For example, the

restriction ñhasGeographicalAvailability some GeographicalAvailabilityò refers to all individuals

that have at least one hasGeographicalAvailability property with range defined by the class

GeographicalAvailability.

 P8: Number of Universal Restrictions. This is defined as the number of restrictions that are

imposed on properties with exactly one range. For example, the universal restriction ñhasUserGroup

only CognitiveImpò states that the hasUserGroup property for all individuals has exactly one range,

that is defined by the class CognitiveImp, thus no other range is allowed for properties.

 P9: Cardinality Restrictions. In OWL, we can describe the class of individuals that have at

least, at most or exactly a specified number of relationships with other individuals or data-type

values. The restrictions that describe these classes are known as cardinality restrictions. Metric P9.

is equal to the number of such cardinality restrictions that allow an individual to participate in a

fixed number of relationships.

 P10: MinCardinality Restrictions. This is equal to the number of restrictions that impose a

minimum number of relationships in which an individual is allowed to participate.

 P11: MaxCardinality Restrictions. This is equal to the number of restrictions that impose a

maximum number of relationships, in which an individual is allowed to participate.

 P12: HasValue Restrictions. This metric counts the number of hasValue restrictions that

define an anonymous class of individuals as a range for a specific property. The hasValue restriction

associates a specific property to a tangible entity (i.e., a string) that is assigned as a value to the

property.

The occurrence of restrictions in an ontology indicates that appropriate care has been taken by the

 29

ontology designer on the concrete definition of ontology properties. For this reason, removing such

restrictions without knowing the motivation behind their insertion might not always be safe. As a

consequence, potentially useful knowledge could be removed resulting in a poor ontology. Hence

the number of various types of restrictions as provided by the aforementioned metrics can be seen

as useful indicators for improving ontology design, whenever performance issues should be taken

into account. Hence, it will be up to the ontology designer to decide about removing any

restrictions, if required, as a trade-off for better performance.

3.5 - Similar Concepts

Also in the architectural layer, we define a criterion about grouping similar concepts that appear in

ontologies. This criterion is classified in the architectural layer because it deals with modularization

issues, such as what modules are defined in the ontology, how they are defined, whether they can be

imported/exported/reused and so on. According to this criterion if lexicographically similar

ontological concepts are repeated frequently throughout the structure, they can be possibly

combined to one module and reused whenever necessary. Hence, duplicate concepts can be defined

only once and their use can be extended within other definitions.

The implication of grouping similar ontological concepts in order to avoid their repetition is to

render maintenance of the specified modules easier, e.g. it becomes a trivial task for ontology

authors to add or remove something in the ontology or to keep track of the naming issues in general,

because naming is preserved and this results in less typing errors. In any case, the definition of

modules depends on the language to be used, what is intended to represent, and the applicability of

reusing the modules.

Evaluation Metrics

The potential for modularity of ontological concepts can be evaluated directly from metrics G1, G2

that are defined below.

 G1: Total Number of Similar Classes. This metric provides the total number of similar

classes in the ontologies, thus expressing the lexicographic duplicates that exist on them.

 G2: Total Number of Similar Properties. It is equal to the total number of similar classes.

This metric indicates the number of lexicographic duplicates with respect to the properties in the

ontology.

3.6 - Documentation/Visualization

The documentation and visualization criterion belongs to the representational/semantic ontological

layer because it encompasses issues such as how the ontology is represented to the outside world

 30

and how it is described in terms of the semantics of its elements. In particular, this criterion

addresses documentation and term governance, among others. It involves the activity of enriching

the ontology with additional information, such as free text comments or annotations, metadata,

implementation code and so on, as well as the collection of documents and explanatory comments

generated during the entire ontology building process. In general, this aspect refers to anything that

could be helpful to make the ontology more readable to its users.

Based on experience, it seems that documentation and visualization concerns are usually left as a

final task by the ontology authors. Thus, ontologies are usually poorly documented, with few or

almost no comments. This results in ontologies that, even if consistent in terms of their syntax and

semantics, are difficult to use and understand, especially by users not involved in their design who

aim to apply or reuse them. In this case as this criterion dictates, the documentation and

visualization aspects of an ontology should be improved and comments should be added for a better

description and clarification of the various ontology parts. After providing sufficient documentation

to an ontology, it will become easier for this to be applied, reused, and consumed by other

applications.

Evaluation Metrics

The goal of the documentation/visualization metrics is to assess the amount of information that is

included in the ontology for documentation purposes. This information may be included in the

various elements in the ontology as free text comments, annotations, or metadata that facilitate the

understanding and reuse of the ontology elements by third-party practitioners. We define the

following metrics:

 D1: Percentage of Documented Classes. This metric provides the total number of

documented classes as a percentage of the total number of classes defined in the ontology and it

indicates the extent to which the classes of an ontology are documented. The closer to 100% the

value of D1 becomes, the more class-related documentation is included in the ontology.

 D2: Percentage of Documented Properties. It is equal to the percentage of the total number

of documented properties with respect to the total number of defined properties. Similarly, this

metric indicates the extent of documentation regarding the properties in the ontology.

3.7 - Properties Domain and Range

The definition of the domain and range in ontology properties is an ontology design aspect that

belongs to data/application layer, as it is related to the representation of data in an ontology and

more specifically it affects data accuracy, comprehensiveness, explicitness, clarity and consistency.

These characteristics have a partial impact on the quality of an ontology when consumed by

applications. The definition of range and domain properties comprises the definition of allowed

values that may be assigned to data properties, or the universe of discourse, to which an object

 31

property is valid and can be applied.

If we think of a property as a function f : D Ÿ R, then D and R represent the propertyôs domain and

range, respectively. For example, the domain of the data-type property hasAge that represents one

personôs age is all individuals that are instances of the class Person. The range of the same property

is the set of all positive integer numbers. Object properties link individuals from their domain to

individuals within their range.

Properties with poorly defined or nonexistent domains or ranges should be avoided because they

result in inconsistencies that prevent applications from properly consuming ontologies. This

shortcoming also occurs when ontologies only define restrictions of concepts, in which the range is

defined as a condition, instead of providing ranges for their object properties. In this case the range

of properties should be directly specified.

Figure 2 illustrates two examples on an ontology about the definition of range for object properties.

The first example shows the data property availabilityOfEspeciallyDesignPlan which was not

associated with any range. In the new version of the TL ontology the range was set to Boolean,

indicating that the two values true or false may be assigned to the aforementioned property. In the

second example, the object property hasWalk was associated initially with the domain

NatureAreaWalks, but again no range was defined. Instead, a condition of NatureAreaWalks existed

according to which, if any object is associated with any other object via the hasWalk property, then

the target objects are instances of the class Walk. Thus, Walk is selected as the range of hasWalk (as

long as there were no other fillers that could be used for this property).

Evaluation Metrics

Object and data-type properties by definition may be associated with a specific domain and range.

The domain represents the pool of individuals to which the property is applied, while range

represents the pool of potential individuals to which domain individuals are mapped. One relevant

issue that concerns poorly designed ontologies is the lack of range and domain definitions on

properties. This situation precludes reasoners to perform reasoning on these activities. In order to

assess the extent to which range and domain is defined for ontology properties, we introduce the

following metrics.

 R1: Properties with domain. This metric counts all properties in an ontology for which the

domain attribute is defined as a valid non-empty domain.

Figure 2: Examples of range definition for object properties.

 32

 R2: Properties with range. Similarly, this metric provides the number of properties for which

a valid non-empty range is defined.

3.8 - Disjointness Restrictions

Last but not least, disjointness restrictions mainly affect the usability layer of the ontology when it

comes to be used as part of an overall application, e.g. when instances are added, forms are created,

or queries have to be answered. These restrictions are applied on ontology classes or properties in

order to apply limitations to the domain in which they are used. Thus, by properly defining classes

and properties their usability is enhanced as their reuse by other applications is more effectively

supported.

Although most concepts inside the ontology are usually pairwise disjoint with each other, this

condition is sometimes missing for some concepts. On the other hand, for some other concepts

disjointness might not hold, but there might be an overlap. In such a case, if for example there may

exist an individual that is an instance of two classes, the disjointness restriction should be removed

from these two classes.

In general, the issue of disjointness restrictions should be considered more carefully during

ontology development or restructuring. That is, for concepts where it is necessary, the missing

disjointness condition should be added. Similarly, for some other concepts where an overlap may

occur and a specific individual may be an instance of all of them, disjointness does not hold and

they should not be declared as pairwise disjoint with each other.

An example is shown in Figure 3 where disjointness for SpectatorStand should not hold for its

subclasses SpectatorStandForHearingImp and SpectatorStandForUpperLimbImp, since an

individual can be defined that is an instance of both subclasses. Therefore, SpectatorStand

subclasses are not pairwise disjoint with each other. By carefully revisiting the disjointness

restrictions the usability of the ontology is radically improved when it comes to be used as part of

an overall application.

Figure 3: Examples of two cases with and without disjointness conditions.

 33

Evaluation Metric

The definition of disjointness restrictions on classes prevents those classes from overlapping with

each other, thus creating confusion to reasoners. In order to careful specify the extent to which

classes in an ontology are defined as disjoint, we introduce the metric J as the total number of

disjointness restrictions on classes. Based on experience, since not all of the classes in an ontology

should be disjoint, this metric is used to indicate whether such types of constraints are taken into

account or not during the design of an ontology.

 34

4 - The Ontology Evaluation Prot®g® plug-in

After setting the methodology for the ontology evaluation the next step was to develop an

implementation of it. This implementation was made as part of a Prot®g® (software) plug-in. The

plug-in was developed for two different editions of the Prot®g®, the 3.4.8 and the 4.1. These two

editions use different APIs [3] the Jena [4] and the OWL API [5] (respectively for the Prot®g® 3.4.8

and 4.1) in order to process an OWL [6] ontology. That's the reason for the development of the two

different editions. Also, at the end of this document there is the section ñOntology Evaluation

Prot®g® plug-in set up instructionsò in which there is a step by step guide regarding the development

process of these two different editions of the plug-in.

The next picture shows the interface of the ontology evaluation plug-in for Prot®g® 3.4.8. (It is

identical for the 4.1 edition).

Picture 1: The interface of the ontology evaluation plug-in for Prot®g® 3.4.8 .

 35

As you can see Ontology Evaluation plug-in consists of two main parts. These are the ñEvaluation

Parametersò and the ñEvaluation Resultsò which are described below.

Evaluation Parameters

The ñEvaluation Parametersò part consists of:

¶ 8 checkboxes, each one of them implements the evaluation metrics of the corresponding

criteria given by the proposed ontology evaluation methodology in the previous section ñ3 ï

A proposed ontology evaluation frameworkò.

Ĭ ñNaming Conventionsò

Ĭ ñClass Hierarchyò

Ĭ ñProperty Hierarchyò

Ĭ ñProperty Restrictionsò

Ĭ ñSimilar Conceptsò

Ĭ ñDocumentation/Visualizationò

Ĭ ñProperties Domain and Rangeò

Ĭ ñDisjointness Restrictionsò

¶ 3 buttons

Ĭ ñStart Evaluation Ontology Testò, starts the procedure and processes the evaluation

metrics of the checked checkboxes.

Ĭ ñSelect Noneò, deselects all the checkboxes.

Ĭ ñSelect Allò, selects all the checkboxes.

Evaluation Results

The white space that consists the ñEvaluation Resultsò is a text area that depicts the results of the

ontology evaluation test after the button ñStart Evaluation Ontology Testò is pressed.

Finally, there are two more buttons on the interface of the plug-in. These are the ñSave test resultsò

and the ñView Recommendationsò. The first one gives the option to the user to save to a text file the

results that are depicted on the ñEvaluation Resultsò text area. The second displays on a new pop-up

window some indicative recommendations for the user in order to improve the tested ontology. This

requires that at least one ontology evaluation test has been performed. The recommendations are

presented separately for each one of the ontology parameters that have been selected in the last

conducted evaluation test. The rules of the recommendations are defined on an empirical basis, by

mainly posting warnings when one or more evaluation metrics appear to have very low values after

an evaluation test has been conducted.

 36

Example

In order to provide a more clear view of how the plug-in works let's give an indicative example.

First we start up the Prot®g® (software).

If we use the 3.4.8 edition we see the following window

Then we click the ñOpen Otherò button and we go to the directory that we have saved our ontology.

We select the ontology that we want to load to the Prot®g® and click ok.

Now the ontology that we want to test is loaded but we've got to display the tab-widget plug-in in

order to run the ontology evaluation test. To do this we click Project Ÿ Configure and then we

select the ñevaluationtabò from the list of the Tab Widget plug-ins as seen below.

Picture 2: Welcome to Prot®g® 3.4.8 window.

 37

If we use the 4.1 edition of the Prot®g® we see the following window when we start it up.

Picture 3: Selecting the evaluationtab on Prot®g® 3.4.8 .

Picture 4: Welcome to Prot®g® 4.1 window.

 38

We select the ñOpen OWL ontologyò option. We go to the directory that we have saved our

ontology. We select the ontology that we want to load to the Prot®g® and click open.

Now the ontology that we want to test is loaded but we've got to display the tab-widget plug-in in

order to run the ontology evaluation test. To do this we click Window Ÿ Tabs Ÿ Evaluation Tab as

seen below.

Picture 5: Selecting the ontology to load.

Picture 6: How to display the Evaluation Tab on Prot®g® 4.1 .

 39

Now letôs assume that we want to run the evaluation tests of the ñNaming Conventionsò and the

ñDocumentation/Visualizationò criteria. All we have to do is to check the corresponding checkboxes

and click the ñStart Evaluation Ontology testò button. Then the results are displayed in the text area

ñEvaluation Resultsò as seen below.

Picture 7: Evaluation results example.

 40

If we press the ñView Recommendationsò button the following window is displayed.

In our case we are prompted to change all the names of the ontology classes, object properties and

data properties to the Camel Case schema because this is majority naming schema in the ontology

as seen from the results previously. Also we are prompted to increase the number of the documented

properties because it is only 45.94% as seen from the results previously. Of course the

recommendations that are displayed based on the evaluation test are indicative. By no means it is

mandatory for the user to follow them as the core of the ontology evaluation plug-in focuses on the

ñEvaluation Resultsò. Each ontology designer takes the ñEvaluation Resultsò and uses them based

on his expertise, his knowledge and what is his final goal from the usage of the tested ontology.

Picture 8: Example of ontology recommendations.

 41

5 - Testing the plug-in

In order to show the added value of the ontology evaluation Prot®g® plug-in, a small indicative

scenario was created that is described on the case study below.

Case study

The basic idea for testing the plug-in was to run the Ontology Evaluation plug-in for various

ontologies and then to make a comparison of the results and to classify the ontologies wherever it

was possible. So for a start we had to choose a set of different ontologies. These ontologies (which

can be found on the official Prot®g® wiki site ï url:

http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library#OWL_ontologies) are the

following:

¶ amino-acid.owl: A small OWL ontology that describes the amino acids and their properties.

¶ camera.owl: An OWL ontology about the individual parts of a photo camera.

¶ wine.owl: An ontology that describes wines (for example the region, the vintage, the wine

color, the wine taste).

¶ travel.owl: A tutorial OWL ontology for a Semantic Web of tourism.

¶ pizza.owl: The OWL ontology used in the Protege-OWL Tutorial that describes various

kinds of pizzas.

After taking the results from the ontology evaluation plug-in for these ontologies we have chosen

three indicative criteria upon which we will classify the ontologies. These criteria are the ñNaming

Conventionsò, ñDocumentationò and ñSimilar Conceptsò. The next three diagrams classify the

ontologies from the best to the worst for each one of the three criteria.

http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library#OWL_ontologies

 42

For the ñNaming Conventionsò we classified the pizza.owl as the best ontology among the five

(seen above) because we wanted the majority of an ontology classes to follow the Camel Case

schema for their names.

Figure 4: Naming conventions classification.

 43

For the ñDocumentationò we classified the pizza.owl as the best ontology among the five (seen

above) because it has by far the most of its classes documented.

Figure 5: Documentation classification.

 44

Finally, for the ñSimilar Conceptsò we classified the camera.owl and travel.owl as the best

ontologies among the five (seen above) because we wanted our ontology to have the least duplicate

or similar names as far as their lexicographic meaning.

What was shown above was an indicative example of the added value that provides us the ontology

evaluation plug-in for the Prot®g®. Of course we could have chosen any other of the plug-ins criteria

in order to classify the ontologies. What was tried to be shown is that with the ontology evaluation

Prot®g® plug-in an ontology designer has a useful tool on his hands so as to evaluate any ontology

and to draw a conclusion based on his needs and expectations by taking in zero time and with

accuracy the necessary information.

Figure 6: Similar concepts classification.

 45

6 - Conclusions and Future Work

In this document it was presented an ontology evaluation methodology whose goal is to provide a

set of guidelines and indicate a best-practice approach for ontology re-structuring and refinement.

The resulted ontologies are characterized by a better structured taxonomy in terms of their concepts

and properties, as a result of eliminating duplicates and definitions of concepts, and reusable ranges

of values for several properties. The resulted ontologies, compared to their original versions, are

more lightweight, well documented and readable. Thus, the evaluation process that is presented in

the paper sufficiently shows that the particular set of criteria that frame our evaluation methodology

can form the basis of a formal ontology restructuring process.

By reviewing relevant work and particularly the most well-known ontology evaluation frameworks

it is concluded that this methodology fills a gap in the relevant literature. More specifically, to the

best of our knowledge, our methodology introduces for the first time such a complete set of

measurable criteria that can be applied directly as a tangible means for ontology evaluation. The

defined metrics may be used either to compare different ontologies, with respect to some, or all of

the involved characteristics. This renders our methodology more complete and applicable compared

to the state-of-the-art approaches.

What is expected of the presented methodology is to shape a formal ontology evaluation framework

that can be applied in a two-fold way; firstly, as a set of guidelines and best practices for newly

created ontologies, and secondly, as a formal ontology framework for existing ontologies. In order

to achieve this expectation it was developed a supporting software framework with a set of tools

that automate the evaluation metrics process, as much as possible. This software framework was

developed as a Prot®g® tab-widget plug-in in order to fulfill in the best possible way an existing and

recognized need for a tangible and efficient ontology evaluation framework capable to be used on a

large-scale basis. Finally, the ontology evaluation plug-in has been published and anyone can give it

a try by visiting the official Prot®g® Wiki site (url:

http://protegewiki.stanford.edu/wiki/Ontology_Evaluation).

Finally, it is worth mentioning the future plans regarding the development and the support of the

ñOntology Evaluation Prot®g® plug-inò. It is going to be studied the possibility of adding more

http://protegewiki.stanford.edu/wiki/Ontology_Evaluation
http://protegewiki.stanford.edu/wiki/Ontology_Evaluation

 46

evaluation criteria on the methodology of the ontology evaluation that was proposed in order to

enhance the value of our plug-in. For example a possible metric that may be added in the future on

the ñOntology Evaluation Prot®g® plug-inò is the entropy measure of an ontology graph. The

entropy will measure how diverse (uncertain) the structure of an ontology is.

 47

References
[1] T. R. Gruber (1993) A translation approach to portable ontologies. Knowledge Acquisition,

5(2):199-220, (PDF) Available at: http://tomgruber.org/writing/ontolingua-kaj-1993.htm

(Accessed: 29 May 2013)

[2] PROTEGE OVERVIEW. what is prot®g®. [WWW]. Available at:

http://protege.stanford.edu/overview/ (Accessed: 29 May 2013).

[3] Application programming interface. [WWW]. Available at:

https://en.wikipedia.org/wiki/Application_programming_interface (Accessed: 29 May 2013).

[4] Apache Jena. [WWW]. Available at: http://jena.apache.org/ (Accessed: 29 May 2013).

[5] The OWL API . [WWW]. Available at: http://owlapi.sourceforge.net/ (Accessed: 29 May

2013).

[6] W3C OWL Working Group (2012). OWL 2 Web Ontology Language

Document Overview (Second Edition). Available at: http://www.w3.org/TR/owl2-overview/

(Accessed: 29 May 2013).

[7] J. Brank, D. Mladenic, M. Grobelnik, ñGold Standard Based Ontology Evaluation Using

Instance Asignmentò. Proceedings of the EON Workshop, 2006.

[8] R. Porzel and R. Malaka, ñA task-based approach for ontology evaluationò. ECAI 2004

Workshop Ontology Learning and Population.

[9] C. Welty and N. Guarino, ñSupporting ontological analysis of taxonomic relationshipsò. Data

and Knowledge Engineering vol. 39, no. 1, pp. 51-74, 2001.

[10] K. Dellschaft and S. Staab, ñOn How to Perform a Gold Standard Based Evaluation of

Ontology Learningò. Proceedings of the 5th International Conference on Semantic Web, 2006.

[11] E. Zavitsanos, G. Paliouras and G.A. Vouros, ñA Distributional Approach to Evaluating

Ontology Learning Methods Using a Gold Standardò. 3rd Ontology Learning and Population

Workshop, ECAI 2008.

[12] P. Spyns, ñEvaLexon: Assessing triples mined from textsò. Technical Report 09, STAR Lab,

Brussel, 2005.

 48

[13] C. Brewster, H. Alani, S. Dasmahapatra and Y. Wilks, ñData driven ontology evaluationò.

Proceedings of International Conference on Language Resources and Evaluation, Lisbon, 2004.

[14] W. Daelemans and M.L. Reinberger, ñShallow Text Understanding for Ontology Content

Evaluationò. IEEE Intelligent Systems 1541-1672, 2004.

[15] J. Murdock, C. Buckner and C. Allen, ñEvaluating Dynamic Ontologiesò. Communications in

Computer and Information Science (Lecture Notes). Spencer-Verlag. 2011.

[16] A. Lozano-Tello and A. G·mez-P®rez, ñONTOMETRIC: A Method to Choose the Appropriate

Ontologyò. Journal of Database Management (2003).

[17] A. Gangemi, C. Catenacci, M. Ciaramita and J. Lehmann, ñA theoretical framework for

ontology evaluation and validationò. SWAP 2005.

[18] A. Felix, K.A. Taofiki and S. Adetokunbo, ñOn Algebraic Spectrum of Ontology Evaluationò.

In International Journal of Advanced Computer Science and Applications (IJACSA), 2011.

[19] K. Supekar, ñA peer review approach for ontology evaluationò. Proceedings 8th International

Prot®g® Conference, Madrid, Spain, July 18-21, 2005.

[20] A. Burton-Jones, V. C. Storey, V. Sugumaran and P. Ahluwalia, ñA semiotic metrics suite for

assessing the quality of ontologiesò. Data and Knowledge Engineering, 2004

[21] B.M Good and J.T. Tennis, ñTerm based comparison metrics for controlled and uncontrolled

indexing languagesò. Information Research, 14(1) paper 395, 2009.

[22] J. Tao, L. Ding and D.L McGuinness, ñInstance Data Evaluation for Semantic Web-Based

Knowledge Management Systemsò. In 42st Hawaii International Conference on Systems Science,

2009.

[23] Bioportal NCBO wiki. Ontology Metrics. Available at:

http://www.bioontology.org/wiki/index.php/Ontology_Metrics (Accessed: 29 May 2013)

[24] OWL Ontology Metrics. Available at: http://www.w3.org/2001/sw/wiki/Ontology_Metrics

(Accessed: 29 May 2013)

[25] J. Vºlker, P. Hitzler and P. Cimiano, ñAcquisition of owl dl axioms from lexical resourcesò. In

Enrico Franconi, Michael Kifer, and Wolfgang May, editors, Proceedings of the 4th European

Semantic Web Conference (ESWCô07), volume 4519 of Lecture Notes in Computer Science, pages

670ï685. Springer, JUN 2007.

 49

[26] D. Lavbic, M. Krisper and M. Bajec, ñContinuous evaluation in the process of ontology

developmentò. In the Sixth International Conference on Internet and Web Applications and Services

(ICIW 2011)

[27] J. Lehmann and P. Hitzler, ñConcept learning in description logics using refinement operatorsò.

Machine Learning journal, 2009.

[28] L. Iannone, I. Palmisano and N. Fanizzi, ñAn algorithm based on counterfactuals for concept

learning in the semantic webò. Applied Intelligence, 26(2), 139ï159, 2007.

[29] Gruninger, O. Bodenreider, F. Olken, L. Obrst, P. Yim, ñThe 2007 Ontology Summit:

Ontology, Taxonomy, Folksonomy: Understanding the Distinctionsò. Journal of Applied Ontology

3:3, 2008, pp. 191-200.

[30] Viktoria PAMMER, Peter SCHEIR, Stefanie LINDSTAEDT. Ontology coverage check:

support for evaluation in ontology engineering. (PDF) Available at: http://know-

center.tugraz.at/download_extern/papers/fomi2006_camera_ready_version_november_2006.pdf

(Accessed: 29 May 2013)

[31] Sourish Dasgupta, Deendayal Dinakarpandian, Yugyung Lee. A Panoramic Approach to

Integrated Evaluation of Ontologies in the Semantic Web. (PDF) Available at: http://ceur-

ws.org/Vol-329/paper04.pdf (Accessed: 29 May 2013)

[32] Alani, H., C. Brewster, and N. Shadbolt. 2006. Ranking ontologies with aktiverank. In

Proceedings of the 5th International Semantic Web Conference, Athens, GA, 5ï9 Nov 2006.

[33] Corcho, O. et al. 2004. ODEval: A tool for evaluating RDF(S), DAML+OIL, and OWL concept

taxonomies. In Proceedings of the 1st IFIP Conference on Artificial Intelligence Applications and

Innovations (AIAI 2004), Toulouse, France, 369ï382.

[34] Mostowfi, F., and F. Fotouhi. 2006. Improving quality of ontology: An ontology transformation

approach. In Proceedings of the 22nd International Conference on Data EngineeringWorkshops

(ICDEWô06), Atlanta, GA.

[35] Samir Tartir, I. Budak Arpinar and Amit P. Sheth. Chapter 5 Ontological Evaluation and

Validation. (PDF) Available at: http://www.cs.uga.edu/~budak/papers/eval.pdf (Accessed: 29 May

2013)

[36] Nenad Stojanovic, Jens Hartmann, Jorge Gonzalez. The OntoManager ï a system for the

usage-based ontology management. (PDF) Available at:

 50

https://km.aifb.kit.edu/ws/LLWA/fgml/final/Stojanovic.pdf (Accessed: 29 May 2013)

[37] Kalfoglou, Y. & Hu, B. (2006). Issues with evaluating and using publicly available ontologies.

In 4th International Workshop on Evaluation of Ontologies for the Web (EON 2006) at the 15th

International World Wide Web Conference, Edinburgh, UK. Retrieved 5 June 2007

[38] Patel, C., Supekar, K., Yugyung, L. & Park, E.K. (2003). OntoKhoj: a semantic web portal for

ontology searching, ranking and classification. In R. Chiang, A.H.F. Laender & E.P. Lim (eds),

Proceedings of the 5th ACM International Workshop on Web Information and Data Management

(pp. 58ï61). New York: ACM Press.

[39] Maynard, D., Peters, Y. & Li, Y. (2006). Metrics for evaluation of ontology-based information

extraction. In 4th International Workshop on Evaluation of Ontologies for the Web (EON 2006) at

the 15th International World Wide Web Conference (PDF) Available at:

http://km.aifb.kit.edu/ws/eon2006/eon2006maynardetal.pdf (Accessed: 29 May 2013)

 51

Annex A

Ontology Evaluation Prot®g® plug-in set up instructions

Below you can read a step by step tutorial for building a tab widget plug-in for the Prot®g® 3.4.8

and the Prot®g® 4.1. The development was made using the ñEclipse IDE for Java EE Developersò

(for more information or to download eclipse click here ï url: http://www.eclipse.org/). Of course

the code was written using the Java Programming Language.

Tab widget plug-in for Prot®g® 3.4.8

Setting up Eclipse

Step 1. Create a new Java Project.

Start Eclipse. Go to File Menu -> New -> Project-> Select Java Project. Click Next. In the next

panel choose a project name, say "evaluationontology". Make sure that you choose the J2SE-1.5 as

execution environment. The screen should look like below:

Click Finish. Congratulations! You have created an empty Java project. Your screen should look

like:

Picture 9: New Java Project window.

http://www.eclipse.org/

